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This presentation engages several challenges for an Expected Utility 

theory of coherent preferences over random quantities when: 

1.  Utilities are (for random variables that are) unbounded. 

 

2.  Coherence – that is, avoidance of uniform dominance in the 

partition by states – is the liberal standard for rational 

preference afforded by de Finetti’s (1974) theory.    

• Part 1, I review de Finetti’s (finitely additive) coherence criterion. 

• Part 2, I present some fresh challenges that confront a theory of  

 coherent preference for unbounded quantities. 

• Part 3, I give a progress report towards a de Finetti-style theory of  

 Expected Utility for unbounded quantities.  



Part 1: A review of de Finetti’s theory of coherent previsions. 

 
An important and historically early application of strict dominance in decision 

making is de Finetti’s criterion of coherence of previsions.   

De Finetti uses  (1)  a privileged partition and  

(2)  a class of variables defined on . 

(1) A privileged partition into states,  = { i: i I an index set}.   

 (uniform, strict) Dominance applies in the privileged partition .   

That is what defines states in de Finetti’s theory of coherent preference, 

in contrast with other partitions. 

 

 A class of bounded, real-valued variables, = {Xj: j  J}, defined on



 > 0

 



 

• 

 

 

• 



With incoherent previsions, the sure-loss book constitutes a combination of 

gambles that is uniformly, strictly dominated by not-betting (= 0). 

De Finetti’s Coherence Theorem:   

• A set of previsions are coherent if and only if they are the expected 

values for the respective random variables under a (finitely 

additive) probability distribution over .  

• When variables are indicator functions for events (subsets of ), 

coherent previsions are the values of a finitely additive probability.  

And then the | i | are the stakes in winner-take-all bets, where the 

previsions fix betting rates, P(Xi) : 1-P(Xi). 



De Finetti’s result applies to called-off previsions, given an event B.  

These use called-off gambles of the form  

B [X  P(X)] 

where B is the indicator function for the conditioning event B. 

 

Then, with a proviso about using only non-null conditioning events, 

coherence of all previsions assures that  

• Coherent called off (2-sided) previsions are finitely additive 

conditional expectations, given the conditioning event.  

Note well:  Called-off previsions correspond to normal form decisions, 

and not to extensive form decisions.   

There is no dynamical coherence in de Finetti’s theory.  His theory 

covers merely static aspects of coherence, since conditional expectations 

are matched with called-off previsions.  

• Thus, de Finetti’s theory of coherence does not require 

updating/learning by Bayesian conditional probabilities.



A second, and equally important result is de Finetti’s  

Fundamental Theorem of Coherent Previsions 

 



Part 2: Dominance for unbounded random variables  (SeScK, 2009) 

Challenge:  With unbounded utilities, coherent preferences,  

(i.e., preferences that respect simple dominance in the partition ) 

do not also respect indifferences between equivalent variables. 

Definition:   Two variables are equivalent if they have the same  

probability distribution over outcomes. 

 

Example:  Consider a fair coin toss with P(H) = P(T) =  

 Let X be the variable X(H) = 1 and X(T) = 0 

  Let Y be the variable Y(H) = 0 and Y(T) = 1. 

  X and Y are equivalent as P(X=1) = P(Y=1) = , etc. 

• In canonical EU-theories, utility is over the outcomes of variables: 

the decision maker is indifferent between equivalent variables.  

 See: von Neumann-Morgenstern (1947); Savage (1954); Anscombe-Aumann (1963). 

• In these theories, preference is defined over lotteries (aka gambles), 

which are the equivalence classes of equivalent variables. 



Two Heuristic Examples illustrating the Challenge 

 

Each of the following two examples provides a collection of 

unbounded but equivalent variables that cannot all be indifferent to 

each other, on pain of incoherence.   

If variables X and Y have equal expected utility, EU(X) = EU(Y), then 

their difference, Z = X-Y, is indifferent to the status quo – EU(Z) = 0. 

But particular combinations of the following equivalent random 

variables have differences that are (uniformly) bounded away from 0. 

Hence, they cannot all be indifferent to one another. 

 



Common structure for both heuristic examples 

 

• Let events En (n = 1, …)  form a partition E = {En} with a 

Geometric( ) probability distribution:   P(En) =  2
-n

 (n = 1, 2, …). 

Flip a fair coin until the first head.  En = first head on flip #n.   

 

• Let A = {AH, AT} be the outcome of another fair-coin flip, 

independent of the events En.   P(AH|En) = P(AH) = .  

 

• Consider the countable state-space  A  E. 

 

 



Heuristic Example 1: St. Petersburg variables 

Define three (equivalent) St. Petersburg random variables, X, Y, and Z, 

as follows. 

   E1    E2      ....   En   ....     

     Z  =  2     Z  =  4        Z  =  2
n
 

AH     X  =  4     X  =  8        X  =  2
n+1

    

     Y  =  2     Y  =  2        Y  =  2 

 

    Z  =  2     Z  =  4       Z  =  2
n
 

AT    X  =  2     X  =  2       X  =  2 

    Y  =  4     Y  =  8       Y  =  2
n+1

 



For each state in A  E,  

X + Y - 2Z  =  2,  a constant quantity. 

This situation contradicts indifference between all 3 pairs of these 

equivalent variables.  Such indifference requires that the expected 

utility EU( ) for the difference between two equivalent variables is 0.   

In this example, that entails,  

EU(X - Z) + EU(Y - Z)  =  EU( X +Y - 2Z )  =  0. 

But the utility of a constant is that constant.  

So,    EU( X + Y - 2Z )  =  2  a contradiction. 

Thus, coherent preferences, here, are not defined merely by the 

probability distribution of utility outcomes. 

Aside:  Heuristic Example 1 uses non-Archimedean preference.   The St. Petersburg 

variables do not have finite utility. Heuristic Example 2 uses Archimedean preferences. 



Heuristic Example 2 – Coherent boost for unbounded variables. 

As before, consider the countable state-space  A  E,  

with the Geometric( ) probability distribution on E,  

and  with an independent “fair coin” distribution on A. 

Define the three equivalent (Geometric) random variables X, Y, and Z. 

   E1     E2      ....                 En   ....     

     X  =  1      X  =  2         X  =  n 

AH     Y  =  2      Y  =  3         Y  =  n+1    

     Z  =  1      Z  =  1         Z  =  1 

     X  =  1      X  =  2               X  =  n 

AT     Y  =  1      Y  =  1         Y   =  1 

     Z  =  2      Z  =  3         Z  =  n+1 

 



• X, Y, and Z are equivalent Geometric( ) variables.   

But for each state in A  E,  Y + Z – X  =  2.   

If all equivalent variables have equal Expected Utility 

EU(Y - X) + EU(Z - X)  =   0    if and only if  

EU(Y) =  EU(Z)  =  EU(X) =  2. 

Then Expected Utility for a Geometric( ) variable X is its countably 

additive expectation, 2, and Expected Utility is continuous from below. 

 

Specifically,        if a sequence of variables < Xn >  X  (pointwise convergence) 

                            and for each state ,   Xn( )  X( ), 

      then   limn  EU(Xn) = EU(X). 

 

That is, in order to have indifference over equivalent Geometric( ) 

random variables, preferences must be continuous from below.  



However, de Finetti’s theory of coherence requires only that preference 

respects (uniform) dominance in the partition by states.   

This entails respecting bounds from sequences of bounded random 

variables without requiring continuity from below. 

Consider, the unbounded Geometric( ) variable X from the example, where  

   X({AT, En})  =  X({AT, En})  =  n;  with P(En) = 2-n. 

Let Xn be the bounded, truncated variable:  

Xn({AT, Em}) = X({AT, Em}) = m for m  n 

and  Xn({AH, Em}) = X({AH, Em}) = 0 for m > n. 

So, for each n = 1, 2, …, and for each state ,    

Xn( )  X( ). 

Also,      <Xn>   X. 

Respect for (uniform) dominance in the partition by states entails that  

limn  EU(Xn)  EU(X). 

Thus, if we start with the class of bounded variables and extend to included X, 

Y and Z, there is no sure-loss that results from the values EU(X) = 10,  EU(Y) = 

4, and EU(Z) = 8; when, X has boost 8, Y has boost 2, and Z has boost 6. 



Principal Lesson from this Heuristic Example 2 

 

Unless preferences are continuous from below, 

which entails that probability is countably additive, then 

Expected Utility for unbounded variables 

is not a function (solely) of the probability distribution of outcomes! 

 

 

 

…. And there is the parallel problem of what to do with the  

(non-Archimedean) coherent preference for St. Petersburg variables.  

 

 

 

 

 



Part 3       A progress report on  

(finitely additive) Expected Utilities for unbounded random variables 

 

From a mathematical perspective, an expectation of a real-valued 

function  f  is an integral, taken with respect to some set function or 

measure, μ . 

Eμ(f)  =   f( ) μ(d ) 

The integral may even be allowed to be merely finitely additive:  

Eμ(f + g) = Eμ(f) + Eμ(g) 

without requiring continuity, aka countable additivity for events. 

 

That is, though a sequence of functions < fi > is suitably convergent to a 

function g, < fi >  g, nonetheless it may be that  

Eμ(g)    limi Eμ(fi).   



• We see that this approach to a theory of expectations, based on a 

set function or measure μ , cannot serve our purposes.   

We face a challenging situation where equivalent variables may be  

required to have unequal expectations.   

In order to accommodate this aspect of a coherent, finitely additive 

preference we require an integral that is not based on a measure. 

 

• Such an expectation-concept is available based on the central idea 

in the Daniell integral.  (See Royden, 1968.)   

Begin with integrals given on a class C of elementary functions 

(including constants), which are closed under linear operations, so the 

integral is a (positive) linear operator.   Then, the integral can be 

extended to a larger class of functions D  C by using the functions 

from C to bound the values of the integral on functions in D, without 

requiring continuity and without basing integrals on a measure.  



Two results obtained using this concept of expectation. 

 

1) When the integrals for a class of elementary functions C are coherent 

in de Finetti’s sense, i.e., if these integrals respect uniform 

dominance in the privileged partition by states, then the values 

allowed for extending the integral to a larger class D match exactly 

the range of coherent extensions under de Finetti’s   

Fundamental Theorem of Previsions.   

 

Example:  Let C be the class of bounded random variables on a state-

space .  Let their integrals be their finitely additive expectations 

under some probability P.  Let class D include the unbounded 

Geometric variables of Heuristic Example 2.  Then their coherent 

“boosted” expectations are permitted values of the extended integrals. 



2) What is distinctive about merely finitely additive probability is 

revealed more clearly in its theory of conditional expectations than 

in its theory of unconditional expectations.   

 

(de Finetti)  Conglomerability in a partition:  

 

Probability P is conglomerable in a partition  = {h1, h2, ... } provided 

that, for each event E in the algebra, the unconditional probability P(E) 

lies inside the closed interval of conditional probabilities {P(E | h)}. 

 

infh  P(E | h)    P(E)   suph  P(E | h) 

 

 



Example A non-conglomerable f.a. probability (Dubins, 1975). 

Let < , B , P> be a finitely additive measure space such that: 

• Countable partition  = E  N.   E = {EC, EF}.   N = {1, 2, …}.   

• Algebra B  is the powerset of .  

• Unconditional probability P satisfies: P(EC) = P(EF) = .     

• Conditional probabililty P( | ) satisfies: 

P(N | EC) is Geometric( )  

P(N | EF) is purely finitely additive – pick a “random” integer. 

   N=1   N=2     ....    N=m    ....   

 EC   1/2
2
   1/2

3
          ....          1/2

(m+1)
        .... 

 EF    0         0     ....            0    .... 

Table of unconditional probabilities for states in Dubins’ example. 

P(N=m) = 2
-(m+1)

 > 0.  So conditional probability given N is determined 

by unconditional probability. 

P(EC) =   <  1 = P(EC | N=m).  

and   P fails to be conglomerable in the partition N. 



• Theorem (SSK, 1984): Each finitely but not countably additive 

probability fails to be conglomerable in some countable partition. 

 

In a partition where probability for an event is not conglomerable, 

there probability is not an average of its conditional probabilities. 

When probability is not conglomerable for an event E in partition ,  

then P is not disintegrable in  either:    

P(E)      h  P(E|h) dP(h). 

But Probability is merely the special case of Expectation restricted to 

indicator functions:  P(E)  = EU( E( ) )  

So, for bounded variables, the conglomerability and disintegration apply 

to Expectations and Conditional Expectations. 



For bounded random variables in a class  = {X} 

an Expected Utility function is disintegrable over  in partition  if  

   X  EU(X)   =   h  EU(X|h) dP(h) 

and  

Expected Utility is conglomerable over  in   

if   X  infh  EU(X | h)    EU(X)   suph  EU(X | h). 

 

One of Dubins’ (1975) important results is that with respect to the class  

of all bounded variables, these are equivalent! 

 

A finitely additive expectation is conglomerable over  in a partition  

just in case 

it is disintegrable over its conditional expectations given elements of . 



Under the following finiteness conditions on unbounded variables, 

using the finitely additive, Daniell-styled integral described before,  

we extend Dubins’ result that conglomerable and disintegrable 

expectations are coextensive.  And we show somewhat more. 

 

 Finiteness conditions on (unbounded) random variables 

• The variables are real-valued – no St. Petersburg variables. 

• The variables have finite absolute expectations:  EU(|X|) < . 

• Each conditional expectation is finite: EU(X | h) < . 

• Expectation of conditional expectation is finite: EU( EU(X|h) ) < . 

 

Note: The set of all variables that satisfy these conditions forms a linear space. 

 

 



Let EU( ) be a (de Finetti) coherent expectation as represented by a 

finitely additive Daniell-styled integral, and  be a partition. 

Let W be a class of variables that meet the finiteness conditions. 

 

• Say that W is of Class-0 relative to an EU( ) and a partition  if  

EU( ) is not conglomerable (hence, also not disintegrable) in  over W. 

Aside:  Let W  Z.  Non-conglomerability is inherited by the larger class Z.  

So, if W is of Class-0 and then Z also is of Class 0. 

  

• Say that W is of Class-1 relative to an EU( ) and a partition  if  

EU( ) is conglomerable but not disintegrable in  over W.  

• Say that W is of Class-2 relative to an EU( ) and a partition  if  

EU( ) is both conglomerable and disintegrable in  over W. 



 

• Dubins’ (1975) result, applied all bounded random variables says, 

relative to an EU( ) and a  either it is of Class-0 or of Class-2. 

•  We show the same for classes of unbounded random variables that 

satisfy the finiteness conditions, and which form a linear space. 

• Also, we give an example of a coherent f.a. expectation, a partition , 

and a class of variables (but which do not form a linear space) that 

includes all the bounded random variables, which is of Class-1:   

The expectations are conglomerable in  but not disintegrable 

under the Daniell-styled integral. 



Summary of our progress 

 

Goal 1  We have adapted an existing theory of integrals – the 

Daniell integral – so that it matches de Finetti’s coherence criterion for 

a class of functions (including constants) that form a linear space.    

• This class includes the unbounded variables from the 2nd heuristic example.   

We are able to incorporate finite boost into our integral theory of 

expectations.  The finitely additive Daniell integral is not required to be 

a function of the distribution of outcomes. 

 



Goal 2   Under the finiteness conditions on unbounded variables, 

we extend Dubins’ result: conglomerable-in-  and disintegrable-in-  

expectations are coextensive.  And we show somewhat more. 

 

However, the first heuristic example, the one involving St. Petersburg 

variables, requires infinite (non-Archimedean) expectations.    

These do not satisfy our finiteness conditions. 

• There is work to be done on an integral representation for         

non-Archimedean, finitely additive expected utility! 
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